
ISRAEL J O U R N A L  OF MATHEMATICS, VoL 29, Nos  2-3, 1978 

CONSTRUCTION OF NON-LINEAR 
SEMI-GROUPS USING PRODUCT FORMULAS 

BY 

FRED B. WEISSLER* 

A B S T R A C T  

Under certain circumstances, the Trotter-Lie formula W, = lim(U.,,V,I.)" is 
used to construct a non-linear semi-group 14/, on closed subsets of L p, I =< p < oo 
In particular we consider the situation where U, = e 'A is a positivity preserving 
C,, (linear) semi-group and V, is generated by a (non-linear) function F with 
certain monotonicity properties. In general, A and F are "singular" on L P and 
no requirement is made that one of them be "relatively bounded" with respect 
to the other. The generator of the resulting semi-group IV, turns out to he an 
extension of A + F restricted to a suitable domain. 

1. Introduction 

This paper  is concerned  with the convergence  of the T r o t t e r - L i e  formula  

(1) W, = lira (U,/,,V,/,)", 

where U, and  V, are non- l i nea r  semi-groups on a closed subset  of a Banach 

space. Brezis and Pazy, [1, theor.  3.7 and  3.8] and [2, theor.  3.2 and corol. 4.3], 

have proved unde r  various c i rcumstances  that (1), or a similar formula,  in fact 

holds. They assume, however,  that the semi-group IV, exists and  is genera ted  in 

the sense of Crandal l  and  Liggett [4, theor.  1]. 

Ou r  approach is to use (1) to help construct  the semi-group IV,. This, of course, 

is done  unde r  some special c ircumstances.  O n e  can then go back and investigate 

the na tu re  of the genera tor  of W,. 

To be more  specific, if K is a subset  of a Banach  space E, a semi-group on K is 

a collection of maps U, : K --* K, t ~ 0, satisfying: 
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(2) 

and 

(3) 

U,U~ = U,+,, Uo = identity; 

for all 49 ~ K, the curve t ~ U,49 is continuous from [0, oo) into E. 

If in addition there exists a real /3 such that 

(4) [I u,49 - u , e  tl --< e "  II - e II 

for all t _-> 0 and 49, to E K, then U, is called a semi-group of type ~. 

We are interested in the case where E = LP(I~), 1 _<-p < ~, for a positive 

measure /~ on a set X. In this paper L p denotes equivalence classes of real 

functions with finite p-norm, (except in Section 6, where the complex case is 

discussed). For real measurable functions 4) and tO, 4) --< tO means 49(x)-  ~b(x) 

a.e. [/~]. In the next section we prove the following result. 

THEOREM 1. Let i ~ be a positive measure on X. For some p E [1, oo), let K be a 

closed subset of L p (tz ) such that 1 49 1E K whenever 49 E K. Suppose U, and V, are 

semi-groups on K of types fl and 3' respectively such that 

(a) if 6, tO E K with 149 [ <= tO, then I U,6 1 <= U, tO ; 

(b) there is a A >= 0 such that I V,49 1 <= e *' 1 49 1 for all 49 E K; 

(c) U,(c49 ) <- cU,49 for all 49 >= 0 in K and c >= 1 (this condition is unnecessary if 

X = 0). 

Assume also that there is a dense subset K,~ of K such that 

(d) for all 49 ~ Ko and t >=0, l im,~[(U,/ ,V, / , )"49](x)= (W,49)(x) exists a.e. 
b,l; 

(e) for all 49 E Ko and sequences t,, ~ O, limm_~(W,~49)(x) = 49(x) a.e. [p~]. 

Then W, extends to a semi-group on K of type ~ + Y and 

(5) W,O = L p - lim (U,/,V,/,)"49 

for all 49 E K and t >= O. 

The proof involves some careful applications of the Lebesgue dominated 

convergence theorem, made possible by conditions (a), (b) and (c) above, and 

also uses a result of Chernott [3] on product limits. Observe that in the case 

where U, = e'A is a linear semi-group, condition (c) is automatic and condition 

(a) says that e 'a is positivity preserving. 

In the subsequent sections we discuss a wide class of examples to which 

Theorem 1 easily applies. In particular, we have the following corollary to 

Theorem 2 in Section 4. 
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COROLLARY. Let Ix be a positive Radon measure on a locally compact 

Hausdorff space X. Let f ( t )  be a polynomial such that f(O) = 0 and f ( t )  < 0 for all 

sufficiently large t > 0 ;  and let (Fch )(x ) = f(qS(x )). Suppose e "~ is a positivity 

preserving Co (linear) semi-group on both L ~ (Ix ) and Co(X) with Ile'A lip <= e~' and 

lie 'A fl~<=e ~'. Then there exists a semi-group W, on Kp, the positive cone in L ~, 

whose generator is an extension of A + F defined on Dp (A ) N Kmp, where m is the 

degree of the polynomial f ( t ) .  

Marsden [6] has also used the Trotter-Lie formula to construct semi-groups. 

The situation he is concerned with, however, is rather different than ours; and he 

shows convergence of (1) only on a finite t-interval, (see [6, theor. 5.1, p. 67]). 
The Trotter-Lie formula has also been helpful in proving a linear perturbation 

theorem for hypercontractive semi-groups in quantum field theory. See [9]. The 

results in the present paper are partially inspired by those techniques. 

I wish to thank Paul Chernoff for suggesting this line of inquiry to me. 

2. Proof of Theorem 1 

We begin with a lemma. 

LEMMA 1. Under the hypotheses of Theorem 1, it follows that for all cb E K, 

(6) I(U,V,)k61<= e~'kU, k(l~b [) 

for all t >= 0 and k = O, 1,2, • • .. In particular, 

(7) ](U,,,V,/,)"ck l <- e~'U,(t 6 1) 

for all t >= 0 and n = 1 ,2 ,3 , . . . .  

PROOF. We prove (6) by induction on k. For k = 0 it is trivial. Assume, 

therefore, that (6) is true for a specific k. Let tp = (U,V,)kck. Then ] V,O[ <= e~'lO [; 

and by the induction hypothesis I tp ] _--- e ~,k U,k (J ~b [). Thus I V,61<= e ~,k +0 U,k (1 ~b I). 
From conditions (a) and (c) in Theorem 1, it now follows that ]U,V, tpI<= 

U, [e ~"k÷'~U,k (J ¢ I)] =< e ~"k+'~ U,~+o(I ¢ I)- This proves the lemma. 

In proving Theorem 1, we will use a slightly strengthened version of the 

dominated convergence theorem. The result we Use follows from theorem 16, 

chapter 4, of Royden [7] by a subsequence a~'gument. 

MODIFIED DOMINATED CONVERGENCE THEOREM. Let tx be a positive measure 

on X ;  and let {fro }, m = 1, 2, 3 , . . . ,  and f be measurable functions on X such that 

fm(x)---~f(x) a.e. [Ix]. Suppose there exist non-negative measurable functions 
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{g,,}, m = 1 , 2 , 3 , . . . ,  and g on X with [fm(x)t<=g,,(x) a.e. [/.t] and g~---->g in 

LP(t.t), for some p ~ [1,2). Then fm ---~f in LP(~).  

We shall also use the following result of Chernoff on product limits and 

semi-groups. 

THEOREM. (Chernoff [3], theorem 2.5.3) Let M be a complete metric space. Let 

F,, t > O, be a collection of Lipschitz mappings on M such that for each to E M the 

curve t ~ F, to is continuous. Assume:  

(i) For each t > 0  and to ~ M, lim._~(F,/.)"to = G, to exists. 

(ii) IIF, I{Lip is locally bounded. 

(iii) For each t > 0, sup, II (F,/.)" I/L~ < 2. 

Then G,+~=G,Gs for all t , s>O;  and for all 4, E M  the curve t ~ G ,  to is 

continuous. 

PROOF OF THEOREM 1. We first show that the product limit formula (5) holds 

for all 4, ~ K,,. For such to, W, to is the almost everywhere limit of (U,;.V,;.)"to as 

n ~ ~. By the lemma the ( U,/. V,.  )"to are all dominated by e~'U,(I to 1), which is 

in L p. Thus the convergence is in the L p norm. 

Consequently, for t0 and 4J in K0, 

II w ,  to - w , +  JI. = II ( u,,° v, ,° )°to - ( u , , .  v,,o )°¢ tip 

<-- e("+~)'l[ to - ~' I1~. 

Thus IV, extends to a map on all of K satisfying the same inequality. 

The product limit formula (5) is now easily seen to hold for all to ~ K. Indeed, 

the maps (U,/,V,/°)", n = 1, 2, 3 , . . . ,  are uniformly Lipschitz on K and converge 

(pointwise in L"  norm) on the dense subset Ko to the Lipschitz map W,. Hence, 

the convergence is on all of K. 

We now apply Chernoff's theorem with E = U,V,. We have just shown that 

condition (i) is met. Conditions (ii) and (iii) are immediate since U, and V, are of 

types/3 and 3'- We conclude that W, satisfies the semi-group property (2) and 

that for all to E K, t ,-, W, to is continuous for t > 0. 

It remains to show continuity at t = 0. Let t,, ,l, 0. Suppose first that to E K0. 

Then by assumption 4) is the almost everywhere limit of W,~to as m --~ o~. Taking 

the L p limit in (7), we see that IW,,tol_<-exp(Atm)U,.(Itol). Since 

exp(At,,)U,~(Itol)---,Ito I in L p, it follows from the modified version of the 

dominated convergence theorem that W,.to --* to in L p. The same is now true for 

an arbitrary to in K since the W,~ are uniformly Lipschitz as m ---> 2. 

This concludes the proof of Theorem 1. 
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3. A non-linear product formula 

Our ultimate goal is to use Theorem 1 to show that certain semi-groups on 

Co(X), the continuous functions vanishing at 0% extend to semi-groups on L p (tz). 

In this section we prove a product formula which will enable us to verify 

conditions (d) and (e) in Theorem 1. The results of this section are formulated on 

an arbitrary Banach space E. 

Let U, = e 'A be a Co (linear) semi-group with He 'A ]] <_~ e °'. Let F: E ~ E be 

semi-Lipschitz (i.e. Lipschitz when restricted to any bounded set in E). It is well 

known (Segal [8], theor. 1) that there is a maximal continous semi-flow IV, on E 

satisfying the integral equation 

fo (8) W,49 = e'A49 + e"-'}Af(W,49)dr. 

We say semi-flow (instead of semi-group) because the (continuous) curve 

t ~ W,49 might only be defined on an interval [0, T~). However, if the endpoint 

T, is finite, we must have lim, t r, II W,49 II = ~" In other words, the only way W,49 

can fail to exist for all t _-> 0 is for it to blow up at a finite t = T,. 

Also, there is the maximal continuous semi-flow V, on E satisfying 

f/ (9) V,49 = 49 + F(V.49 )dr. 

Observe that the generator of IV, is precisely A + F, i.e. lira, ~o t-'(W,49 - 49) 

exists if and only if 4} @ D ( A )  and in that case the limit equals A49 + F(49). The 

generator of V, is F. 

LEMMA 2. (preliminary calculation) Let IV, and I1", be as above. Then 

f/ e'aV, O - W, qJ = [ e ' F ( V , q  0 - e( ' - ' )~f(W,  qO]dr. 

PROOF. Write e'AV,~ - I4/,41 as e ' a [ V , O - O ] - [ W , q ~ - e ' " ~ ]  and use the 

integral equations (8) and (9). 

PROPOSITION 1. Under the above circumstances, suppose in addition that V, is 

a semi-group on E of type 7. Assume also that F(O) = O. Then IV, is a semi-group 

on E of type [3 + 7. Moreover, for all 49 ~ E and T > 0 

0o) [ t / n A  v ,  lirn te v,/ ,)"6 = W,6 

uni[ormly [or t E [0, T]. 
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REMARKS. This proposition follows from corollary 4.3 in Brezis and Pazy [2], 

at least if E is uniformly convex. (See also corollary 10.3 in Kato [5].) Our proof 

does not depend on the advanced non-linear semi-group theory, but rather is 

based on the integral equations in the form of Lemma 2. Moreover, the 

calculation below can be used to prove (10) in cases where the semi-group theory 

does not apply. For example, if V, is only a continuous semi-flow (and not a 

semi-group), then for each 4~ E E the product formula (10) still holds uniformly 

on some interval [0, T]. If e'a is a contraction semi-group, then we may drop the 

requirement F ( 0 ) =  0 and still have (10) hold uniformly on some interval. 

PROOF. For a given ~ E E let [0, 7",) be the interval on which W, tk is defined. 

We first show that for T < 7", the product formula, (10) holds uniformly on 

[0, T]. Expanding in a telescoping sum, we see that for any t ~ [0, T], 

ii o-, 
II(e'/-AV,/.)-4~- w,4~ll= ~ [(e ' /"V, / . )"-k- 'e ' /"~V, / . (W,/ . )%b 

k = 0  

n - I  

<= ~ e~÷*"~"-k-"/"[[e'/"AV,/.W,k,,4~ -- W,/.W,k/,d~ [[ 
k = 0  

n - l  

k = 0  

<= ne~+~sup{[[e'/"AV,/.W~ck - W , / . W ~  [1: 

0 <= s <= (n - 1)T/n}.  

Next we use the preliminary calculation of Lemma 2. For notational simplicity 

we let 

g(t, z, s)  = e'AF(V.W~ck ) - eC'-'~aF(W.W~ch ). 

Then the previous expression is bounded by 

lfo TM ne~°+'~rsup JIg(t/n,r,s)llcl,:O~-s~(n-1)r/n} 

<- te ~o+,,r sup {11 g (t/n, r, s)ll: 0 -~ s N (n - 1) r / n ,  0 <- r <- t /n  } 

~ r e  ~"+''~ sup{lIg(t ,  r, s)ll: 0 ~ s ~ (n  - 1 ) r / n ,  0 <- r <= t <- r / n } .  

This last expression converges to 0 as n ~ ~ since g(t, r, s)  is jointly continuous 

in all three variables and g(0,0, s ) =  0 for all s. This proves (10) for T < 7",. 
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From (10) it now follows that 11W, ck -  W, qJlt <= e (~+~'' H4~- qJll whenever t <  

min(T,, T,). Furthermore, since F(O) = 0, we must have I4/,(0) = 0 for all t => 0. 

Thus pJ w,611--e(~+"ll61J whenever t < T,. Consequently W,6 cannot blow up 

at a finite value of t, and so T, = oo. Thus W, is a semi-group, and the proposition 

is proved. 

4. A class of examples 

In this section X denotes a locally compact Hausdorff space. Cc (X) denotes 

the real continuous functions on X with compact support and Co(X) the real 

continuous functions on X vanishing at infinity. We consider Co(X) as a Banach 

space with the sup norm II II~- Also,/z denotes a positive Radon measure on X, 

i.e. a Borel measure determined by a positive linear functional on Co(X) in the 

usual way. The crucial fact we shall use is that Cc(X) is dense in L p = LP(/z) for 

all p ~ [1, oo). 

Our goal is to construct a semi-group on L p which in some sense is generated 

by A + F, where A is the generator of a Co (linear) semi-group and F is some 

"singular" non-linear mapping in L p, for example a polynomial. The following 

elementary proposition describes the class of functions F (and the semi-groups 

generated by F)  which we consider. 

PROPOSITION 2. For real functions ~b on X let F(4~) be given by F(ck)(x)= 

f(x, ~b(x)), where f: X × R ~ R is continuous and satisfies: 

(a) [(x, O) = 0 for all x ~ X. 

(b) For any ot > 0 the functions f (x , .  ) are uniformly Lipschitz on [ - a, ot], i.e. 
there exists c(ct) such that I f ( x , t ) - f ( x , s ) l < = c ( ~ ) l t - s [  whenever t, 

s E 

(c) There exists 3, E R, independent of x, such that t ~ f(x, t) - yt is monotone 
non-increasing on R for all x E X. 

Then F: Co(X)-* Co(X) is semi-Lipschitz ; and the maximal continuous semi- 

flow V, on Co(X) generated by F, i.e. satisfying the integral equation (9), is in fact 

a semi-group of type 3' on Co(X). V, also satisfies: 

(i) I V,4,1_-< e~ ' [6l ;  
(ii) V, qb >= 0 whenever ¢k >- O. 

Furthermore, for all p U [1, o~) 1/, extends to a semi-group of type y on L p (also 

denoted by V,) satisfying (i) and (ii). 

PROOF. Denote f ( x , . )  by fx. Then for (h, ~ ~ Co(X) 

(11) IFqb(x)- Ftp(x)l = I f x (6 (x ) ) - f x (6 (x ) ) l  <= c ( a ) / 6 ( x ) -  q.,(x)l 
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where a = max [116 II=, II IIq. This proves F: Co(X)--~ Co(X) is semi-Lipschitz. 

Let V, be the corresponding semi-flow on Co(X) satisfying the integral equation 

(9). Then for all x E X 

f, (v,6)(x)= 6(x)+ fx(v.6(x))d~. 
) 

Since/x (0) = 0, it follows that if ( V , 6 ) ( x )  = 0 for some t, then (Vs6 ) ( x )  = 0 for all 

s => t. Thus ( V , 6 ) ( x )  never has the opposite sign from 6(x).  This proves (ii). 

Furthermore, since/~ ( t ) -  yt is non-increasing, it follows that 

(12) I V , 6 ( x ) -  V,6(x)l  <= e ~ ' 1 6 ( x ) -  O(x)l 

for all 6 , ~  • Co(X), x • X, and t_>-0: In particular, since V,(0) = 0, 

(13) I V,6(x  )l <-- e~'16(x )l - 

This proves (i) and shows that V, is a semi-group, which (because of (12)) is of 

type y. 

The extension to L p is straightforward using (12) and (13), and the dominated 

convergence theorem for L p continuity of t ~, V,6. 

THEOREr~ 2. Let F and 1/, be as in the previous proposition. Fix p • [1, ~) and 

let e 'a be a positivity preserving Co semi-group on both L p and Co(X) with 

I1 e'A I1, <= e ~' and lie 'A 1{~<- e °'. Let W, be the semi-group of type [3 + y on Co(X) 

satisfying the integral equation (8) as described in Proposition 1. 

(i) Then W, extends to a semi-group of type [3 + 3' on L p with 

(14) W,6 = L" - lim (e'/"A V,,, )"6 

for all 6 • L p and t >= O. Moreover, W, preserves the positive cone in L P. 

(ii) Let B be the generator of W, in L p with domain Dp(B),  i.e. B 6  = 

L e - l i m , ~ o t - ' ( W , 6 -  6 )  for all those 6 in L p for which the limit exists. Then 

D p ( B ) n  Co(X)= Dp(A )t3 C,,(X) and B 6  = A 6  + F6 for all 6 • Dp(A )N  

Co(X). (Dp(A ) denotes the domain of A as the generator of e 'A in LL)  

Furthermore, if p > 1 W, leaves Dp(A ) N  Co(X) invariant. In particular, if 

6 • D p ( A ) N  Co(X), the curve t ~ W,6 is right differentiable in L p for all t >=0 
with right derivative A W,6 + F(W,  6) .  

(iii) Suppose for some q • (t 9, o:) F: L p f3 L q ~ L p is semi-Lipschitz (as is the 

case if F is a polynomial). Then the integral equation (8) holds for all 6 • L p f3 

L q. (The integrand is continuous in LL)  Moreover, D p ( B ) N  L q = D p ( A ) N  L q 

and B 6  = A 6  + F6 for all 6 • Dp ( A )  f3 L q. 
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Furthermore, i f  p > 1 W, leaves Dp ( A  ) 71L q invariant. In particular, i f  4, E 

D p ( A  ) 71L q the curve t ~ W,4, is right differentiable in L p for all t >= 0 with right 

derivative A I4/,4) + F(W,4,) .  

PRoov. We apply Theorem 1 with K = L p and K,, = L p 0 Co(X).  U, = e '~ is 

linear and positivity preserving and thus satisfies conditions (a) and (c). Proposi- 

tion 2 says that V, satisfies condition (b). It follows from Proposition 1 that for all 

4, in Ko 

W,4, = Co(X)  - l im (e'/"A V,/,,)"4, 

uniformly for compact intervals of t. Thus condition (d) is easily satisfied. 

Similarly, condition (e) is satisfied since W, is a semi-group on C, (X) .  

Consequently, Theorem 1 implies that IV, extends to a semi-group of type 

/3 + 3, on L p satisfying (14). Since both e 'a and V, leave the positive cone in L p 

invariant (recall (ii) of Proposition 2), (14) implies that IV, must do likewise. This 

proves the first part of the theorem. 

Turning to the second part, note first that for 4,, t~ E L p t') Co(X)  formula (11) 

implies 

(15) IIF4, - Vq' lip _-< c(,~)114, - 4'[Ip 

where a = max [114, II , II q, lid. Thus, for 4, n Co(X) the integrand in 

(16) W,4, = e'A4, + e( '- '~"F(W,4,  )dr  

is continuous in L p and 

fo (17) L p - lim t - '  e" - '~aF(W,4 , )dr  = F4,. 
t J,0 

It follows immediately that D p ( B ) N C o ( X ) = D p ( A ) N C o ( X )  and B4,=  

A4, + F4, for 4, E Dp (N ) r3 Co(X).  

Now if 4, E D p ( A ) N  Co(X),  then certainly W,4, E L p A Co(X).  If p > 1, we 

must show Ws4, E D p ( A ) .  For p > 1 L p is reflexive; and it therefore suffices to 

show that t - ' l } e ' A W s 4 ,  - W,4 , I I  p remains bounded as t ~, 0. But by (16) and (17) 

that is the same as showing t -~ I[ W, Ws4, - W~4, remains bounded as t ~ 0. 

Since t-'l[ W,W~4, - Ws4, lip = t-'ll wsw,4 ,  - ws4, lip <--- e~°+')'t-'lt w,4, - 4, lip, the 

result follows because 4, E Dp (B). 

For the third part of the theorem, first observe that by interpolation e "  is a 

positivity preserving Co semi-group on L q with lle 'A IIq <= eO'. Thus, W, is a 
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semi-group of type /3 + 7 on L q just as it is on L ~. To show that the integral 

equation holds for 4' E L p f3 L", choose a sequence 4',, C C0(X) with 4',, --~ 4' in 

both L p and L q and apply the dominated convergence theorem to the L p valued 

integrals f'o e('-'~AF(W,4',.)dT. The rest of the proof is virtually the same as for 

the previous part of the theorem, and we omit the details. 

This concludes the proof of Theorem 2. 

5. Remarks 

In the proof of Theorem 1, Chernoff's theorem was used to show that W, 

satisfied the semi-group property (2) and was strongly continuous for t > 0. If in 

proving Theorem 2 we were to repeat the arguments in Theorem 1 rather than 

simply apply it, we would not need Chernoff's result. That W,W, = W,÷s on L p 

follows since it is true on Co(X) and continuity of t ~ W,4' can be proved for 

t > 0  the way it was proved for t = 0. 

Note further that although the product formula W,4' = lim(e"nAV,/nf4' in 

Co(X) holds uniformly on compact t-intervals, we have not shown the same to 

be true in L p. Convergence in L p for each t is all that has been asserted. 

An interesting feature of Theorem 2 is that we have not required F to be 

"relatively bounded"  with respect to A in some sense. The "degrees of 

singularity" of A and F as mappings in L p are independent of each other. 

Finally, observe that the behavior of IV, on the positive cone in L ~ depends 

solely on the values of f (x ,  t) for t -> 0. Thus the corollary stated in Section 1 

follows easily from Theorem 2. 

6. Extension to complex L p spaces 

The results above are stated for real L p spaces; and the main example, i.e. 

when F(4 ')  is a polynomial, fits naturally into this context. However,  one can go 

back and see how the results carry over to the complex L p spaces. 

First of all, if we understand that for arbitrary complex functions the 

expression 4, =< tp means that 4' and 0 are real valued with 4' (x) =< t) (x) a.e. [,a ], 

then Theorem 1 remains valid as stated (with the same proof) for complex L p 

spaces. On the other hand, to construct V, as in Proposition 2 on the complex 

spaces Co(X) and LP(Ix) requires a modification. For complex functions 4' on X 

let F(4 ' ) ( x )  = f(x ,  4"(x)), where f :  X x C---* C is continuous and satisfies: 

(a) f ( x ,O)= 0 for all x E X. 

(b) For  any a > 0 there exists c (a )  such that If(x, z )  - f (x ,  w )l <= c (a )l z - w I 

whenever l z I, I w I -< a. 
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(c) There exists 3, ~ R such that for all x E X, z ~ f(x, z ) -  3~z is a dissipative 

operator on the two dimensional real Hilbert space C. 

With this F the results of Proposition 2 and Theorem 2 are valid for the complex 

spaces Co(X) and LP(~),  except that V, and W, need not preserve the positive 

cones. 
An example of such an f can be constructed as follows: Let g : X x R --~ R 

satisfy the hypotheses of Proposition 2. Then it is straightforward to verify that 

f: X x C ~ C given by f(x, z) = (sgn z)g (x, ] z ]) satisfies the requirements stated 

above. 
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