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CONSTRUCTION OF NON-LINEAR
SEMI-GROUPS USING PRODUCT FORMULAS

BY
FRED B. WEISSLER'

ABSTRACT

Under certain circumstances, the Trotter-Lie formula W, =lim(U,,,V,,.)" is
used to construct a non-linear semi-group W, on closed subsetsof L?, 1= p <o,
In particular we consider the situation where U, = e" is a positivity preserving
C, (linear) semi-group and V, is generated by a (non-linear) function F with
certain monotonicity properties. In general, A and F are “‘singular” on L? and
no requirement is made that one of them be *‘relatively bounded” with respect
to the other. The generator of the resulting semi-group W, turns out to be an
extension of A + F restricted to a suitable domain.

1. Introduction

This paper is concerned with the convergence of the Trotter-Lie formula
(1) Wr = hn}c (Ul/n‘/l/n )n7

where U, and V, are non-linear semi-groups on a closed subset of a Banach
space. Brezis and Pazy, [1, theor. 3.7 and 3.8] and {2, theor. 3.2 and corol. 4.3],
have proved under various circumstances that (1), or a similar formula, in fact
holds. They assume, however, that the semi-group W, exists and is generated in
the sense of Crandall and Liggett {4, theor. 1].

Our approach is to use (1) to help construct the semi-group W, This, of course,
is done under some special circumstances. One can then go back and investigate
the nature of the generator of W,

To be more specific, if K is a subset of a Banach space E, a semi-group on K is
a collection of maps U,: K — K, t = 0, satisfying:
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2 UU, = U.,  U,=identity;

and

3) for all ¢ € K, the curve t » U, is continuous from [0, ) into E.
If in addition there exists a real 8 such that

) U - Ugl=e® |- ¢l

for all t =0 and ¢, ¢ € K, then U, is called a semi-group of type B.

We are interested in the case where E = L"(u), 1=p <, for a positive
measure u on a set X. In this paper L? denotes equivalence classes of real
functions with finite p-norm, (except in Section 6, where the complex case is
discussed). For real measurable functions ¢ and ¢, ¢ = ¢ means ¢(x) = Y (x)
a.e. [p]. In the next section we prove the following result.

TueoreM 1. Let p be a positive measure on X. For some p € [1,), let K be a
closed subset of L? () such that | ¢ | € K whenever ¢ € K. Suppose U, and V, are
semi-groups on K of types B and vy respectively such that

@) if o, € K with |¢p| =, then |Ud|= Uy,

(b) there is a A =0 such that |[V.p|=e|d| for all  EK;

(©) Ulcd)=cUd forall ¢ 20 in K and ¢ = 1 (this condition is unnecessary if
A =0).

Assume also that there is a dense subset K, of K such that

(d) for all €K, and t 20, lim,—x [(Uiju Vin )" ] (x) = (Wi ) (x) exists a.e.
(]

(e) for all € K, and sequences t,, | 0, lim_.(W, ¢)(x)= ¢d(x) a.e. [].
Then W, extends to a semi-group on K of type B + vy and

(5) Weo=L"- li_lE (Ue/n‘/t/n)"¢
for all p € K and t 2 0.

The proof involves some careful applications of the Lebesgue dominated
convergence theorem, made possible by conditions (a), (b) and (c) above, and
also uses a result of Chernoff [3] on product limits. Observe that in the case
where U, = ¢ is a linear semi-group, condition (c) is automatic and condition
(a) says that e' is positivity preserving.

In the subsequent sections we discuss a wide class of examples to which
Theorem 1 easily applies. In particular, we have the following corollary to
Theorem 2 in Section 4.
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CoroLLARY. Let u be a positive Radon measure on a locally compact
Hausdorff space X. Let f(t) be a polynomial such that f(0)= 0 and f(t) <0 for all
sufficiently large t >0; and let (Fp)(x)= f(¢p(x)). Suppose e is a positivity
preserving C, (linear) semi-group on both L?(u) and Co(X) with ||e"* ||, = ¢® and
e |l-= e®. Then there exists a semi-group W, on K,, the positive cone in L”,
whose generator is an extension of A + F defined on D,(A) N K,.,, where m is the
degree of the polynomial f(t).

Marsden [6] has also used the Trotter-Lie formula to construct semi-groups.
The situation he is concerned with, however, is rather different than ours; and he
shows convergence of (1) only on a finite ¢-interval, (see [6, theor. 5.1, p. 67]).

The Trotter-Lie formula has also been helpful in proving a linear perturbation
theorem for hypercontractive semi-groups in quantum field theory. See [9]. The
results in the present paper are partially inspired by those techniques.

I wish to thank Paul Chernoff for suggesting this line of inquiry to me.

2. Proof of Theorem 1
We begin with a lemma.

LeMmA 1. Under the hypotheses of Theorem 1, it follows that for all ¢ € K,

(6) UV ¢l=eUn(d])
forall t =20 and k =0,1,2,---. In particular,
™ [(UinVin)'d | = U ¢ )

forall t=0 and n=1,2,3,---.

Proor. We prove (6) by induction on k. For k =0 it is trivial. Assume,
therefore, that (6) is true for a specific k. Let ¢ = (U,V,)*¢. Then |V | = e ¢ |;
and by the induction hypothesis | | = e**Ux (| ¢ |). Thus | Vi | = e “ PUn (| b ).
From conditions (a) and (c) in Theorem 1, it now follows that |UVy|=
Ule* PUs(| @ DI = e*“" P Uusi(| ¢ 1). This proves the lemma.

In proving Theorem 1, we will use a slightly strengthened version of the
dominated convergence theorem. The result we use follows from theorem 16,
chapter 4, of Royden [7] by a subsequence argument.

MobiFiIED DOMINATED CONVERGENCE THEOREM. Let w be a positive measure
on X; and let {f.}, m =1,2,3,---, and f be measurable functions on X such that
fn(x)— f(x) a.e. [n]. Suppose there exist non-negative measurable functions
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{gm}, m=1,2,3,---, and g on X with [f.(x}| = g.(x) a.e. [n]} and g.—> g in
L?(w), for some p €[1,%). Then f. — fin L?(n).

We shall also use the following result of Chernoff on product limits and
semi-groups.

THeOREM. (Chernoft [3], theorem 2.5.3) Let M be a complete metric space. Let
F, t >0, be a collection of Lipschitz mappings on M such that for each ¢ € M the
curve t » F.¢ is continuous. Assume:

(i) For each t >0 and ¢ € M, lim,_.(F.,.)"® = G.¢ exists.

(1) ||F | is locally bounded.

(iii) For each t >0, sup, ||(Fin)" lup < .

Then G..,= GG, for all t,s>0; and for all ¢ EM the curve t» G is

continuous.

Proor oF THEOREM 1. We first show that the product limit formula (5) holds
for all ¢ € K,. For such ¢, W.¢ is the almost everywhere limit of (U,;.V,;.)"® as
n — «. By the lemma the (U,.V.,.)"¢ are all dominated by e U, (| ¢ |), which is
in L*. Thus the convergence is in the L? norm.

Consequently, for ¢ and ¢ in K,,

W = Wi [l, = lim [(UinViru)'d = (Uin Virn )" [

=e® -,
Thus W, extends to a map on all of K satisfying the same inequality.

The product limit formula (5) is now easily seen to hold for all ¢ € K. Indeed,
the maps (U,/.V..)", n =1,2,3, - -, are uniformly Lipschitz on K and converge
(pointwise in L” norm) on the dense subset K, to the Lipschitz map W, Hence,
the convergence is on all of K.

We now apply Chernoff’s theorem with F, = U,V,. We have just shown that
condition (i) is met. Conditions (ii) and (iii) are immediate since U, and V, are of
types B and y. We conclude that W, satisfies the semi-group property (2) and
that for all ¢ € K, t» W, ¢ is continuous for ¢ > 0.

It remains to show continuity at ¢ = 0. Let 1, | 0. Suppose first that ¢ € K,.
Then by assumption ¢ is the almost everywhere limit of W, ¢ as m — . Taking
the L” fimit in (7), we see that |W, ¢|=<exp(At.)U,.(ld]). Since
exp(Atn)U, ({6 )= ¢ ]| in L? it follows from the modified version of the
dominated convergence theorem that W, ¢ — ¢ in L*. The same is now true for
an arbitrary ¢ in K since the W,

This concludes the proof of Theorem 1.

are uniformly Lipschitz as m — .
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3. A non-linear product formula

Our ultimate goal is to use Theorem 1 to show that certain semi-groups on
Cy(X), the continuous functions vanishing at », extend to semi-groups on L” ().
In this section we prove a product formula which will enable us to verify
conditions (d) and (e} in Theorem 1. The results of this section are formulated on
an arbitrary Banach space E.

Let U, =e*" be a C, (linear) semi-group with [[e”||=e®. Let F:E — E be
semi-Lipschitz (i.e. Lipschitz when restricted to any bounded set in E). It is well
known (Segal [8], theor. 1) that there is a maximal continous semi-flow W, on E
satisfying the integral equation

t

@®) Wb = e"p + f AR (Wb )dr.

We say semi-flow (instead of semi-group) because the (continuous) curve
t » W,¢ might only be defined on an interval [0, T,). However, if the endpoint
T, is finite, we must have lim, ; 1, || W¢ | = ®. In other words, the only way W,¢
can fail to exist for all t =0 is for it to blow up at a finite t = T,.

Also, there is the maximal continuous semi-flow V, on E satisfying

©) Vo= + j " F(V.$)dr.

Observe that the generator of W, is precisely A +F, ie. lim, ot (W — ¢)
exists if and only if ¢ € D(A) and in that case the limit equals A¢ + F(¢). The
generator of V, is F.

LemMa 2. (preliminary calculation) Let W, and V, be as above. Then
eV — Wy = J [e“F(V.p)— e "*F(W.¢)]dr.
G
ProOF. Write eV — Wb as e[V — ¢ —[Wyh —e™¢] and use the
integral equations (8) and (9).

ProrosiTiON 1. Under the above circumstances, suppose in addition that V. is
a semi-group on E of type y. Assume also that F(0) = 0. Then W, is a semi-group
on E of type B +y. Moreover, for all ¢ €E and T >0

(10) lim (e'/nA ‘/1/n )nd) = Wr¢

n-—x

uniformly for t € [0, T}.
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REmaRks.  This proposition follows from corollary 4.3 in Brezis and Pazy [2],
at least if E is uniformly convex. (See also corollary 10.3 in Kato [5].) Our proof
does not depend on the advanced non-linear semi-group theory, but rather is
based on the integral equations in the form of Lemma 2. Moreover, the
calculation below can be used to prove (10) in cases where the semi-group theory
does not apply. For example, if V. is only a continuous semi-flow (and not a
semi-group), then for each ¢ € E the product formula (10} still holds uniformly
on some interval [0, T). If e** is a contraction semi-group, then we may drop the
requirement F(0)=0 and still have (10) hold uniformly on some interval.

Proor. Foragiven ¢ € E let [0, T, ) be the interval on which W,¢ is defined.
We first show that for T < T, the product formula (10) holds uniformly on
[0, T]. Expanding in a telescoping sum, we see that for any ¢ € [0, T},

”(e'/"A‘/l/n)n¢ _ W¢ ” = ” :ZU [(eI/nA‘/l/n)n—k—leI/nA‘/l/"(“/‘/n)k¢

— (€ Vi) T W (Wi )] ”

[

n~1
> e@r ek in | A, WD — W W |
k=0

fIA

n—1
e® TS e AV, Wit — WoaWarnd |
k=0

= ne“’“”rsup{Ile”"A ‘/I/nWs¢ - Wr/nWSd’ ”
Oss=(n-1)T/n}.

Next we use the preliminary calculation of Lemma 2. For notational simplicity
we let

g(t,7,5)=e"F(V,W,p)— e" " F(W,W,9).

Then the previous expression is bounded by
t/n .
ne®* T sup {f lg@/n,1,s)]dr:0=s=(n—-1)T/n}
o

=te® " sup{ig(t/in,1,s):0=s=(n-1)T/n,0=71 =t/n}
=Te® ' sup{lg(t,7,s)|:0=s=(n-1)T/n,0=7 =t =T/n}.

This last expression converges to 0 as n — « since g(t, 7, s) is jointly continuous
in all three variables and g(0,0,s) =0 for all s. This proves (10) for T < T,.
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From (10) it now follows that ||W.¢ — W ||=e®*""' ||¢ — ¢ whenever ¢ <
min(Ty, T,). Furthermore, since F(0) =0, we must have W,(0)=0 for all t = 0.
Thus || W,¢ || < e®""" | ¢ | whenever t < T,. Consequently W, cannot blow up
at a finite value of t, and so T, = «. Thus W, is a semi-group, and the proposition
is proved.

4. A class of examples

In this section X denotes a locally compact Hausdorff space. C.(X) denotes
the real continuous functions on X with compact support and Co(X) the real
continuous functions on X vanishing at infinity. We consider Co( X) as a Banach
space with the sup norm || |.. Also, u denotes a positive Radon measure on X,
i.e. a Borel measure determined by a positive linear functional on C,.(X) in the
usual way. The crucial fact we shall use is that C.(X)is dense in L? = L?(u) for
all p €[1,).

Our goal is to construct a semi-group on L? which in some sense is generated
by A + F, where A is the generator of a C, (linear) semi-group and F is some
“singular” non-linear mapping in L*, for example a polynomial. The following
elementary proposition describes the class of functions F (and the semi-groups
generated by F) which we consider.

ProrosiTion 2. For real functions ¢ on X let F(¢) be given by F(¢)(x)=
f(x, d(x)), where f: X X R — R is continuous and satisfies:

(@) f(x,0)=0 for all x € X.

(b) For any a >0 the functions f(x,-) are uniformly Lipschitz on [ — a, ], i.e.
there exists c(a) such that |f(x,t)—f(x,s)|=c(a)|t—s| whenever t,
sE[-a,a].

(c) There exists vy € R, independent of x, such that t » f(x,t)— yt is monotone
non-increasing on R for all x € X.

Then F: Co(X)— C(X) is semi-Lipschitz; and the maximal continuous semi-
flow V., on Co(X) generated by F, i.e. satisfying the integral equation (9), is in fact
a semi-group of type y on Co(X). V. also satisfies:

() [Vél=e"[s];

(i) Vi¢p =0 whenever ¢ = 0.

Furthermore, for all p € [1,) V, extends to a semi-group of type y on L* (also
denoted by V) satisfying (i) and (ii).

Proor. Denote f(x,-) by f.. Then for ¢, ¢ € Co(X)
(1) Fo(x)= Fp(x)| = f(@ ()~ f(W(x)| = c(a)|d(x)— ¥ (x)]
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where @ = max[||¢ ||, ||¢|l-]. This proves F: Co(X)— Co(X) is semi-Lipschitz.
Let V, be the corresponding semi-flow on Cyo(X) satisfying the integral equation
(9). Then for all x € X

(Vap)(x)= )+ [ £ (Vi)

Since £, (0) = 0, it follows that if (V.¢)(x) = 0 for some ¢, then (V,¢)(x) = 0 for all
s = t. Thus (Vi¢)(x) never has the opposite sign from ¢ (x). This proves (ii).
Furthermore, since f.(t)— vyt is non-increasing, it follows that

(12) [Vid(x) = Vg(x)|=e” |d(x) = y(x)]
for all ¢, € C«(X), x € X, and ¢t =2 0. In particular, since V.(0)=10,
(13) [V(x)[=e"|d(x)].

This proves (i) and shows that V, is a semi-group, which (because of (12)) is of
type v.

The extension to L” is straightforward using (12) and (13), and the dominated
convergence theorem for L? continuity of ¢t Vié.

THEOREM 2. Let F and V, be as in the previous proposition. Fix p € [1,®) and
let e be a positivity preserving C, semi-group on both L? and Ci(X) with
le|l, = e® and ||e* .= e®. Let W, be the semi-group of type B + vy on Co(X)
satisfying the integral equation (8) as described in Proposition 1.

(i) Then W, extends to a semi-group of type B +vy on L” with

(14) W = L7 —lim (¢"V,,.)"¢

for all ¢ € L? and t = 0. Moreover, W, preserves the positive cone in L”.

(it) Let B be the generator of W, in L® with domain D,(B), ie. B¢ =
L? =1im, ot (Wi — &) for all those ¢ in L* for which the limit exists. Then
D,(B)NCy(X)=D,(A)NCyX) and B = A¢p + F¢ for all $ € D,(A)N
Co(X). (D,(A) denotes the domain of A as the generator of e'* in L*.)

Furthermore, if p>1 W, leaves D,(A)N C(X) invariant. In particular, if
¢ € D,(A)N CuX), the curve t » W, is right differentiable in L* for all t =0
with right derivative AW, + F(W.9).

(iif) Suppose for some q € (p, =) F: L? N L?— L* is semi-Lipschitz (as is the
case if F is a polynomial). Then the integral equation (8) holds for all $ € L7 N
L. (The integrand is continuous in L".) Moreover, D,(B)NL*=D,(A)NL*
and B¢ = A¢p + F¢ for all € D,(A)N L
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Furthermore, if p >1 W, leaves D,(A)N L? invariant. In particular, if ¢ €
D,(A)N L* the curve t » W,¢ is right differentiable in L* for all t = 0 with right
derivative AW, ¢ + F(W,¢).

Proor. We apply Theorem 1 with K = L? and Ko = L? N Cy(X). U, = e™ is
linear and positivity preserving and thus satisfies conditions (a) and (c). Proposi-

tion 2 says that V, satisfies condition (b). It follows from Proposition 1 that for all
¢ in K,

Wi = Co(X)~ lim (" V.., '

uniformly for compact intervals of ¢ Thus condition (d) is easily satisfied.
Similarly, condition (e) is satisfied since W, is a semi-group on Cu(X).

Consequently, Theorem 1 implies that W, extends to a semi-group of type
B + v on L? satisfying (14). Since both e** and V, leave the positive cone in L?
invariant (recall (ii) of Proposition 2), (14) implies that W, must do likewise. This
proves the first part of the theorem.

Turning to the second part, note first that for ¢,y € L” N Co(X) formula (11)
implies

(15) IFé - Fyl, = c(a)lé -yl
where a = max[|| ¢ |- ||¢|l-]. Thus, for ¢ € L? N Co(X) the integrand in

t

(16) W =ep +f e AF(W.d)dr
[
is continuous in L? and
17 L?— lifrol t"[ e VAF(W,¢)dr = Fo.
f 0

It follows immediately that D,(B)N CyX)=D,(A)N Co(X) and B¢ =
A¢ + Fo for ¢ € D,(A)N Co(X).

Now if ¢ € D,(A)N Co(X), then certainly W,p € L” N Co(X). If p>1, we
must show W.¢ € D,(A). For p >1 L7 is reflexive; and it therefore suffices to
show that t'||e"*W.¢ — W.¢ ||, remains bounded as ¢ | 0. But by (16) and (17)
that is the same as showing ¢™'|| W,W.¢ —~ W,¢ |, remains bounded as ¢ | 0.
Since 7| WWip — W, =7 W.W.p — Wip [, =e®t 7| Wi ~ ¢ ]},, the
result follows because ¢ € D,(B).

For the third part of the theorem, first observe that by interpolation e isa
positivity preserving C, semi-group on L? with [e" [, =e®. Thus, W, is a
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semi-group of type B+ vy on L? just as it is on L”. To show that the integral
equation holds for ¢ € L? N L, choose a sequence ¢, € Co(X ) with ¢, — ¢ in
both L? and L* and apply the dominated convergence theorem to the L? valued
integrals fie“ "*F(W.é. )dr. The rest of the proof is virtually the same as for
the previous part of the theorem, and we omit the details.

This concludes the proof of Theorem 2.

5. Remarks

In the proof of Theorem 1, Chernoff’s theorem was used to show that W,
satisfied the semi-group property (2) and was strongly continuous for ¢ > 0. If in
proving Theorem 2 we were to repeat the arguments in Theorem 1 rather than
simply apply it, we would not need Chernoff’s result. That W,W, = W,,, on L*
follows since it is true on Co(X) and continuity of ¢t » W, can be proved for
t >0 the way it was proved for ¢ = 0.

Note further that although the product formula W,¢ =lim(e**V,,.)"¢ in
Co(X) holds uniformly on compact ¢-intervals, we have not shown the same to
be true in L?. Convergence in L” for each ¢ is all that has been asserted.

An interesting feature of Theorem 2 is that we have not required F to be
“relatively bounded” with respect to A in some sense. The “‘degrees of
singularity” of A and F as mappings in L’ are independent of each other.

Finally, observe that the behavior of W, on the positive cone in L” depends
solely on the values of f(x,t) for t = 0. Thus the corollary stated in Section 1
follows easily from Theorem 2.

6. Extension to complex L° spaces

The results above are stated for real L” spaces; and the main example, i.e.
when F(¢) is a polynomial, fits naturally into this context. However, one can go
back and see how the results carry over to the complex L? spaces.

First of all, if we understand that for arbitrary complex functions the
expression ¢ = ¢ means that ¢ and ¢ are real valued with ¢ (x) = (x)a.e. [u],
then Theorem 1 remains valid as stated (with the same proof) for complex L?
spaces. On the other hand, to construct V. as in Proposition 2 on the complex
spaces Co(X) and L”(u ) requires a modification. For complex functions ¢ on X
let F(¢)(x)= f(x, d(x)), where f: X x C— C is continuous and satisfies:

(a) f(x,0)=0 for all x € X.

(b) For any a >0 there exists ¢ (a) such that |f(x,z) = f(x, w)| = c(a)|z —w]|
whenever |z, |w| = a.
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(¢c) There exists y € R such that forall x € X, z » f(x, z)— yz is a dissipative
operator on the two dimensional real Hilbert space C.

With this F the results of Proposition 2 and Theorem 2 are valid for the complex
spaces Co(X) and L?(u), except that V, and W, need not preserve the positive
cones.

An example of such an f can be constructed as follows: Let g: X X R —- R
satisfy the hypotheses of Proposition 2. Then it is straightforward to verify that
f: X x C— C given by f(x,z) = (sgn z)g(x, ] z |) satisfies the requirements stated
above.
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